The SED Machine - Fast classification of transient objects
نویسندگان
چکیده
منابع مشابه
Machine Learning Classification of SDSS Transient Survey Images
We show that multiple machine learning algorithms can match human performance in classifying transient imaging data from the SDSS supernova survey into real objects and artefacts. This is a first step in any transient science pipeline and is currently still done by humans, but future surveys such as LSST will necessitate fully machine-enabled solutions. Using features trained from eigenimage an...
متن کاملdata mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Fast Support Vector Machine Classification of Very Large Datasets
In many classification applications, Support Vector Machines (SVMs) have proven to be high performing and easy to handle classifiers with very good generalization abilities. However, one drawback of the SVM is its rather high classification complexity which scales linearly with the number of Support Vectors (SV). This is due to the fact that for the classification of one sample one has to evalu...
متن کاملDesign efficient support vector machine for fast classification
This paper presents a four-step training method for increasing the efficiency of support vector machine (SVM). First, a SVM is initially trained by all the training samples, thereby producing a number of support vectors. Second, the support vectors, which make the hypersurface highly convoluted, are excluded from the training set. Third, the SVM is re-trained only by the remaining samples in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the International Astronomical Union
سال: 2013
ISSN: 1743-9213,1743-9221
DOI: 10.1017/s1743921313007011